------------------------------------------------------------------------
-- The Agda standard library
--
-- Convenient syntax for "equational reasoning" using a preorder
------------------------------------------------------------------------
-- Example uses:
--
-- u∼y : u ∼ y
-- u∼y = begin
-- u ≈⟨ u≈v ⟩
-- v ≡⟨ v≡w ⟩
-- w ∼⟨ w∼y ⟩
-- y ≈⟨ z≈y ⟩
-- z ∎
--
-- u≈w : u ≈ w
-- u≈w = begin-equality
-- u ≈⟨ u≈v ⟩
-- v ≡⟨ v≡w ⟩
-- w ≡⟨ x≡w ⟨
-- x ∎
{-# OPTIONS --cubical-compatible --safe #-}
open import Relation.Binary.Bundles using (Preorder)
module Relation.Binary.Reasoning.Preorder
{p₁ p₂ p₃} (P : Preorder p₁ p₂ p₃) where
open Preorder P
------------------------------------------------------------------------
-- Publicly re-export the contents of the base module
open import Relation.Binary.Reasoning.Base.Double isPreorder public