{-# OPTIONS --safe --lossy-unification #-}
module Cubical.Algebra.Group.ZAction where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Powerset
open import Cubical.Data.Sigma
open import Cubical.Data.Int as ℤ
renaming
(_·_ to _*_ ; _+_ to _+ℤ_ ; _-_ to _-ℤ_ ; pos·pos to pos·) hiding (·Assoc; ·IdL; ·IdR)
open import Cubical.Data.Nat renaming (_·_ to _·ℕ_ ; _+_ to _+ℕ_)
open import Cubical.Data.Nat.Mod
open import Cubical.Data.Nat.Order
open import Cubical.Data.Empty renaming (rec to ⊥-rec)
open import Cubical.Data.Sum renaming (rec to ⊎-rec)
open import Cubical.Data.Unit
open import Cubical.Data.Fin hiding (_/_)
open import Cubical.Data.Fin.Arithmetic
open import Cubical.HITs.SetQuotients renaming (_/_ to _/s_ ; rec to sRec ; elim to sElim)
open import Cubical.HITs.PropositionalTruncation as Prop
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Group.Properties
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.Instances.Int
open import Cubical.Algebra.Group.Instances.Unit
open import Cubical.Algebra.Group.Instances.IntMod
open import Cubical.Algebra.Group.DirProd
open import Cubical.Algebra.Group.Subgroup
open import Cubical.Algebra.Group.GroupPath
open import Cubical.Algebra.Group.IsomorphismTheorems
open import Cubical.Algebra.Group.QuotientGroup
open import Cubical.Algebra.Group.Exact
open import Cubical.Relation.Nullary
private
variable
ℓ ℓ' : Level
open Iso
open GroupStr
open IsGroupHom
open Exact4
_ℤ[_]·_ : ℤ → (G : Group ℓ) → fst G → fst G
pos zero ℤ[ G' ]· g = 1g (snd G')
pos (suc n) ℤ[ G' ]· g = _·_ (snd G') g (pos n ℤ[ G' ]· g)
negsuc zero ℤ[ G' ]· g = inv (snd G') g
negsuc (suc n) ℤ[ G' ]· g =
_·_ (snd G') (inv (snd G') g) (negsuc n ℤ[ G' ]· g)
homPresℤ· : {G : Group ℓ} {H : Group ℓ'}
→ (ϕ : GroupHom G H)
→ (x : fst G) (z : ℤ)
→ fst ϕ (z ℤ[ G ]· x) ≡ (z ℤ[ H ]· fst ϕ x)
homPresℤ· (ϕ , ϕhom) x (pos zero) = pres1 ϕhom
homPresℤ· {H = H} (ϕ , ϕhom) x (pos (suc n)) =
pres· ϕhom _ _
∙ cong (_·_ (snd H) (ϕ x)) (homPresℤ· (ϕ , ϕhom) x (pos n))
homPresℤ· (ϕ , ϕhom) x (negsuc zero) = presinv ϕhom _
homPresℤ· {H = H} (ϕ , ϕhom) x (negsuc (suc n)) =
pres· ϕhom _ _
∙ cong₂ (_·_ (snd H)) (presinv ϕhom x)
(homPresℤ· (ϕ , ϕhom) x (negsuc n))
rUnitℤ· : (G : Group ℓ) (x : ℤ) → (x ℤ[ G ]· 1g (snd G)) ≡ 1g (snd G)
rUnitℤ· G (pos zero) = refl
rUnitℤ· G (pos (suc n)) =
cong (_·_ (snd G) (1g (snd G)))
(rUnitℤ· G (pos n))
∙ ·IdL (snd G) (1g (snd G))
rUnitℤ· G (negsuc zero) = GroupTheory.inv1g G
rUnitℤ· G (negsuc (suc n)) =
cong₂ (_·_ (snd G)) (GroupTheory.inv1g G) (rUnitℤ· G (negsuc n))
∙ ·IdL (snd G) (1g (snd G))
rUnitℤ·ℤ : (x : ℤ) → (x ℤ[ ℤGroup ]· 1) ≡ x
rUnitℤ·ℤ (pos zero) = refl
rUnitℤ·ℤ (pos (suc n)) = cong (pos 1 +ℤ_) (rUnitℤ·ℤ (pos n)) ∙ sym (pos+ 1 n)
rUnitℤ·ℤ (negsuc zero) = refl
rUnitℤ·ℤ (negsuc (suc n)) = cong (-1 +ℤ_) (rUnitℤ·ℤ (negsuc n))
∙ +Comm (negsuc 0) (negsuc n)
private
precommℤ : (G : Group ℓ) (g : fst G) (y : ℤ)
→ (snd G · (y ℤ[ G ]· g)) g ≡ (sucℤ y ℤ[ G ]· g)
precommℤ G g (pos zero) = ·IdL (snd G) g ∙ sym (·IdR (snd G) g)
precommℤ G g (pos (suc n)) =
sym (·Assoc (snd G) _ _ _)
∙ cong ((snd G · g)) (precommℤ G g (pos n))
precommℤ G g (negsuc zero) = ·InvL (snd G) g
precommℤ G g (negsuc (suc n)) =
sym (·Assoc (snd G) _ _ _)
∙ cong ((snd G · inv (snd G) g)) (precommℤ G g (negsuc n))
∙ negsucLem n
where
negsucLem : (n : ℕ) → (snd G · inv (snd G) g)
(sucℤ (negsuc n) ℤ[ G ]· g)
≡ (sucℤ (negsuc (suc n)) ℤ[ G ]· g)
negsucLem zero = (·IdR (snd G) _)
negsucLem (suc n) = refl
module _ (G : Group ℓ) (g : fst G) where
private
lem : (y : ℤ) → (predℤ y ℤ[ G ]· g)
≡ (snd G · inv (snd G) g) (y ℤ[ G ]· g)
lem (pos zero) = sym (·IdR (snd G) _)
lem (pos (suc n)) =
sym (·IdL (snd G) ((pos n ℤ[ G ]· g)))
∙∙ cong (λ x → _·_ (snd G) x (pos n ℤ[ G ]· g))
(sym (·InvL (snd G) g))
∙∙ sym (·Assoc (snd G) _ _ _)
lem (negsuc n) = refl
distrℤ· : (x y : ℤ) → ((x +ℤ y) ℤ[ G ]· g)
≡ _·_ (snd G) (x ℤ[ G ]· g) (y ℤ[ G ]· g)
distrℤ· (pos zero) y = cong (_ℤ[ G ]· g) (+Comm 0 y)
∙ sym (·IdL (snd G) _)
distrℤ· (pos (suc n)) (pos n₁) =
cong (_ℤ[ G ]· g) (sym (pos+ (suc n) n₁))
∙ cong (_·_ (snd G) g)
(cong (_ℤ[ G ]· g) (pos+ n n₁) ∙ distrℤ· (pos n) (pos n₁))
∙ ·Assoc (snd G) _ _ _
distrℤ· (pos (suc n)) (negsuc zero) =
distrℤ· (pos n) 0
∙ ((·IdR (snd G) (pos n ℤ[ G ]· g) ∙ sym (·IdL (snd G) (pos n ℤ[ G ]· g)))
∙ cong (λ x → _·_ (snd G) x (pos n ℤ[ G ]· g))
(sym (·InvL (snd G) g)) ∙ sym (·Assoc (snd G) _ _ _))
∙ (·Assoc (snd G) _ _ _)
∙ cong (λ x → _·_ (snd G) x (pos n ℤ[ G ]· g)) (·InvL (snd G) g)
∙ ·IdL (snd G) _
∙ sym (·IdR (snd G) _)
∙ (cong (_·_ (snd G) (pos n ℤ[ G ]· g)) (sym (·InvR (snd G) g))
∙ ·Assoc (snd G) _ _ _)
∙ cong (λ x → _·_ (snd G) x (inv (snd G) g))
(precommℤ G g (pos n))
distrℤ· (pos (suc n)) (negsuc (suc n₁)) =
cong (_ℤ[ G ]· g) (predℤ+negsuc n₁ (pos (suc n)))
∙∙ distrℤ· (pos n) (negsuc n₁)
∙∙ (cong (λ x → _·_ (snd G) x (negsuc n₁ ℤ[ G ]· g))
((sym (·IdR (snd G) (pos n ℤ[ G ]· g))
∙ cong (_·_ (snd G) (pos n ℤ[ G ]· g)) (sym (·InvR (snd G) g)))
∙∙ ·Assoc (snd G) _ _ _
∙∙ cong (λ x → _·_ (snd G) x (inv (snd G) g)) (precommℤ G g (pos n)))
∙ sym (·Assoc (snd G) _ _ _))
distrℤ· (negsuc zero) y =
cong (_ℤ[ G ]· g) (+Comm -1 y) ∙ lem y
distrℤ· (negsuc (suc n)) y =
cong (_ℤ[ G ]· g) (+Comm (negsuc (suc n)) y)
∙∙ lem (y +negsuc n)
∙∙ cong (snd G · inv (snd G) g)
(cong (_ℤ[ G ]· g) (+Comm y (negsuc n)) ∙ distrℤ· (negsuc n) y)
∙ (·Assoc (snd G) _ _ _)
GroupHomℤ→ℤpres- : (e : GroupHom ℤGroup ℤGroup) (a : ℤ)
→ fst e (- a) ≡ - fst e a
GroupHomℤ→ℤpres- e a = presinv (snd e) a
ℤ·≡· : (a b : ℤ) → a * b ≡ (a ℤ[ ℤGroup ]· b)
ℤ·≡· (pos zero) b = refl
ℤ·≡· (pos (suc n)) b = cong (b +ℤ_) (ℤ·≡· (pos n) b)
ℤ·≡· (negsuc zero) b = refl
ℤ·≡· (negsuc (suc n)) b = cong (λ X → - b +ℤ X) (ℤ·≡· (negsuc n) b)
GroupHomℤ→ℤPres· : (e : GroupHom ℤGroup ℤGroup) (a b : ℤ)
→ fst e (a * b) ≡ a * fst e b
GroupHomℤ→ℤPres· e a b =
cong (fst e) (ℤ·≡· a b) ∙∙ homPresℤ· e b a ∙∙ sym (ℤ·≡· a (fst e b))
gen₁-by : (G : Group ℓ) → (g : fst G) → Type _
gen₁-by G g = (h : fst G)
→ Σ[ a ∈ ℤ ] h ≡ (a ℤ[ G ]· g)
gen₂-by : ∀ {ℓ} (G : Group ℓ) → (g₁ g₂ : fst G) → Type _
gen₂-by G g₁ g₂ =
(h : fst G) → Σ[ a ∈ ℤ × ℤ ] h ≡ _·_ (snd G) ((fst a) ℤ[ G ]· g₁) ((snd a) ℤ[ G ]· g₂)
Iso-pres-gen₁ : ∀ {ℓ ℓ'} (G : Group ℓ) (H : Group ℓ') (g : fst G)
→ gen₁-by G g → (e : GroupIso G H)
→ gen₁-by H (fun (fst e) g)
Iso-pres-gen₁ G H g genG is h =
(fst (genG (inv (fst is) h)))
, (sym (rightInv (fst is) h)
∙∙ cong (fun (fst is)) (snd (genG (inv (fst is) h)))
∙∙ (homPresℤ· (_ , snd is) g (fst (genG (inv (fst is) h)))))
Iso-pres-gen₂ : (G : Group ℓ) (H : Group ℓ') (g₁ g₂ : fst G)
→ gen₂-by G g₁ g₂ → (e : GroupIso G H)
→ gen₂-by H (fun (fst e) g₁) (fun (fst e) g₂)
fst (Iso-pres-gen₂ G H g₁ g₂ genG is h) = genG (inv (fst is) h) .fst
snd (Iso-pres-gen₂ G H g₁ g₂ genG is h) =
sym (rightInv (fst is) h)
∙∙ cong (fun (fst is)) (snd (genG (inv (fst is) h)))
∙∙ (pres· (snd is) _ _
∙ cong₂ (_·_ (snd H))
(homPresℤ· (_ , snd is) g₁ (fst (fst (genG (inv (fst is) h)))))
(homPresℤ· (_ , snd is) g₂ (snd (fst (genG (inv (fst is) h))))))
¬1=x·suc-suc : (n : ℕ) (x : ℤ) → ¬ pos 1 ≡ x * pos (suc (suc n))
¬1=x·suc-suc n (pos zero) p = snotz (injPos p)
¬1=x·suc-suc n (pos (suc n₁)) p =
snotz (injPos (sym (cong predℤ (snd (intLem₂ n n₁))) ∙ sym (cong predℤ p)))
where
intLem₂ : (n x : ℕ)
→ Σ[ a ∈ ℕ ] ((pos (suc x)) * pos (suc (suc n)) ≡ pos (suc (suc a)))
intLem₂ n zero = n , refl
intLem₂ n (suc x) = lem _ _ (intLem₂ n x)
where
lem : (x : ℤ) (n : ℕ) → Σ[ a ∈ ℕ ] (x ≡ pos (suc (suc a)))
→ Σ[ a ∈ ℕ ] pos n +ℤ x ≡ pos (suc (suc a))
lem x n (a , p) = n +ℕ a
, cong (pos n +ℤ_) p ∙ cong sucℤ (sucℤ+pos a (pos n))
∙ sucℤ+pos a (pos (suc n)) ∙ (sym (pos+ (suc (suc n)) a))
¬1=x·suc-suc n (negsuc n₁) p = posNotnegsuc _ _ (p ∙ intLem₁ _ _ .snd)
where
intLem₁ : (n m : ℕ) → Σ[ a ∈ ℕ ] (negsuc n * pos (suc m)) ≡ negsuc a
intLem₁ n zero = n , ·Comm (negsuc n) (pos 1)
intLem₁ n (suc m) = lem _ _ .fst ,
(·Comm (negsuc n) (pos (suc (suc m)))
∙∙ cong (negsuc n +ℤ_) (·Comm (pos (suc m)) (negsuc n) ∙ (intLem₁ n m .snd))
∙∙ lem _ _ .snd)
where
lem : (x y : ℕ) → Σ[ a ∈ ℕ ] negsuc x +ℤ negsuc y ≡ negsuc a
lem zero zero = 1 , refl
lem zero (suc y) = (suc (suc y)) , +Comm (negsuc zero) (negsuc (suc y))
lem (suc x) zero = (suc (suc x)) , refl
lem (suc x) (suc y) =
(lem (suc (suc x)) y .fst)
, (predℤ+negsuc y (negsuc (suc x)) ∙ snd ((lem (suc (suc x))) y))
GroupEquivℤ-pres1 : (e : GroupEquiv ℤGroup ℤGroup) (x : ℤ)
→ (fst (fst e) 1) ≡ x → abs (fst (fst e) 1) ≡ 1
GroupEquivℤ-pres1 e (pos zero) p =
⊥-rec (snotz (injPos (sym (retEq (fst e) 1)
∙∙ (cong (fst (fst (invGroupEquiv e))) p)
∙∙ pres1 (snd (invGroupEquiv e)))))
GroupEquivℤ-pres1 e (pos (suc zero)) p = cong abs p
GroupEquivℤ-pres1 e (pos (suc (suc n))) p =
⊥-rec (¬1=x·suc-suc _ _ (h3 ∙ ·Comm (pos (suc (suc n))) (invEq (fst e) 1)))
where
h3 : pos 1 ≡ _
h3 = sym (retEq (fst e) 1)
∙∙ cong (fst (fst (invGroupEquiv e)))
(p ∙ ·Comm 1 (pos (suc (suc n))))
∙∙ GroupHomℤ→ℤPres· (_ , snd (invGroupEquiv e)) (pos (suc (suc n))) 1
GroupEquivℤ-pres1 e (negsuc zero) p = cong abs p
GroupEquivℤ-pres1 e (negsuc (suc n)) p = ⊥-rec (¬1=x·suc-suc _ _ lem₂)
where
lem₁ : fst (fst e) (negsuc zero) ≡ pos (suc (suc n))
lem₁ = GroupHomℤ→ℤpres- (_ , snd e) (pos 1) ∙ cong -_ p
compGroup : GroupEquiv ℤGroup ℤGroup
fst compGroup = isoToEquiv (iso -_ -_ -Involutive -Involutive)
snd compGroup = makeIsGroupHom -Dist+
compHom : GroupEquiv ℤGroup ℤGroup
compHom = compGroupEquiv compGroup e
lem₂ : pos 1 ≡ invEq (fst compHom) (pos 1) * pos (suc (suc n))
lem₂ = sym (retEq (fst compHom) (pos 1))
∙∙ cong (invEq (fst compHom)) lem₁
∙∙ (cong (invEq (fst compHom)) (·Comm (pos 1) (pos (suc (suc n))))
∙ GroupHomℤ→ℤPres· (_ , (snd (invGroupEquiv compHom)))
(pos (suc (suc n))) (pos 1)
∙ ·Comm (pos (suc (suc n))) (invEq (fst compHom) (pos 1)))
groupEquivPresGen : ∀ {ℓ} (G : Group ℓ) (ϕ : GroupEquiv G ℤGroup) (x : fst G)
→ (fst (fst ϕ) x ≡ 1) ⊎ (fst (fst ϕ) x ≡ - 1)
→ (ψ : GroupEquiv G ℤGroup)
→ (fst (fst ψ) x ≡ 1) ⊎ (fst (fst ψ) x ≡ - 1)
groupEquivPresGen G (ϕeq , ϕhom) x (inl r) (ψeq , ψhom) =
abs→⊎ _ _ (cong abs (cong (fst ψeq) (sym (retEq ϕeq x)
∙ cong (invEq ϕeq) r))
∙ GroupEquivℤ-pres1 (compGroupEquiv
(invGroupEquiv (ϕeq , ϕhom)) (ψeq , ψhom)) _ refl)
groupEquivPresGen G (ϕeq , ϕhom) x (inr r) (ψeq , ψhom) =
abs→⊎ _ _
(cong abs (cong (fst ψeq) (sym (retEq ϕeq x) ∙ cong (invEq ϕeq) r))
∙ cong abs (presinv
(snd (compGroupEquiv (invGroupEquiv (ϕeq , ϕhom))
(ψeq , ψhom))) 1)
∙ absLem _ (GroupEquivℤ-pres1
(compGroupEquiv (invGroupEquiv (ϕeq , ϕhom)) (ψeq , ψhom))
_ refl))
where
absLem : ∀ x → abs x ≡ 1 → abs (- x) ≡ 1
absLem (pos zero) p = ⊥-rec (snotz (sym p))
absLem (pos (suc zero)) p = refl
absLem (pos (suc (suc n))) p = ⊥-rec (snotz (cong predℕ p))
absLem (negsuc zero) p = refl
absLem (negsuc (suc n)) p = ⊥-rec (snotz (cong predℕ p))
gen₂ℤ×ℤ : gen₂-by (DirProd ℤGroup ℤGroup) (1 , 0) (0 , 1)
fst (gen₂ℤ×ℤ (x , y)) = x , y
snd (gen₂ℤ×ℤ (x , y)) =
ΣPathP ((cong₂ _+ℤ_ ((·Comm 1 x) ∙ cong fst (sym (distrLem 1 0 x)))
((·Comm 0 y) ∙ cong fst (sym (distrLem 0 1 y))))
, +Comm y 0
∙ cong₂ _+ℤ_ (·Comm 0 x ∙ cong snd (sym (distrLem 1 0 x)))
(·Comm 1 y ∙ cong snd (sym (distrLem 0 1 y))))
where
ℤ×ℤ = DirProd ℤGroup ℤGroup
_+''_ = GroupStr._·_ (snd ℤ×ℤ)
distrLem : (x y : ℤ) (z : ℤ)
→ Path (ℤ × ℤ) (z ℤ[ ℤ×ℤ ]· (x , y)) (z * x , z * y)
distrLem x y (pos zero) = refl
distrLem x y (pos (suc n)) =
(cong ((x , y) +''_) (distrLem x y (pos n)))
distrLem x y (negsuc zero) = refl
distrLem x y (negsuc (suc n)) = cong₂ _+''_ refl ((distrLem x y (negsuc n)))
gen₁ℤGroup-⊎ : (g : ℤ) → gen₁-by ℤGroup g → (g ≡ 1) ⊎ (g ≡ -1)
gen₁ℤGroup-⊎ (pos zero) h = ⊥-rec (negsucNotpos 0 0 (h (negsuc 0) .snd ∙ rUnitℤ· ℤGroup _))
gen₁ℤGroup-⊎ (pos (suc zero)) h = inl refl
gen₁ℤGroup-⊎ (pos (suc (suc n))) h = ⊥-rec (¬1=x·suc-suc n _ (rem (pos 1)))
where
rem : (x : ℤ) → x ≡ fst (h x) * pos (suc (suc n))
rem x = h x .snd ∙ sym (ℤ·≡· (fst (h x)) (pos (suc (suc n))))
gen₁ℤGroup-⊎ (negsuc zero) h = inr refl
gen₁ℤGroup-⊎ (negsuc (suc n)) h = ⊥-rec (¬1=x·suc-suc n _ (rem (pos 1) ∙ ℤ·negsuc (fst (h (pos 1))) (suc n) ∙ -DistL· _ _))
where
rem : (x : ℤ) → x ≡ fst (h x) * negsuc (suc n)
rem x = h x .snd ∙ sym (ℤ·≡· (fst (h x)) (negsuc (suc n)))
module _ (ϕ : GroupHom ℤGroup ℤGroup) where
ℤHomId : fst ϕ 1 ≡ 1 → fst ϕ ≡ idfun _
ℤHomId p = funExt rem
where
remPos : (x : ℕ) → fst ϕ (pos x) ≡ idfun ℤ (pos x)
remPos zero = pres1 (snd ϕ)
remPos (suc zero) = p
remPos (suc (suc n)) =
pres· (snd ϕ) (pos (suc n)) 1 ∙ cong₂ _+ℤ_ (remPos (suc n)) p
rem : (x : ℤ) → fst ϕ x ≡ idfun ℤ x
rem (pos n) = remPos n
rem (negsuc zero) =
presinv (snd ϕ) 1 ∙ cong -_ p
rem (negsuc (suc n)) =
presinv (snd ϕ) (pos (suc (suc n)))
∙ cong -_ (remPos (suc (suc n)))
ℤHomId- : fst ϕ -1 ≡ -1 → fst ϕ ≡ idfun _
ℤHomId- p = ℤHomId (presinv (snd ϕ) (negsuc 0) ∙ cong -_ p)
ℤHom1- : fst ϕ 1 ≡ -1 → fst ϕ ≡ -_
ℤHom1- p = funExt rem
where
rem-1 : fst ϕ (negsuc zero) ≡ pos 1
rem-1 = presinv (snd ϕ) (pos 1) ∙ cong -_ p
rem : (n : ℤ) → fst ϕ n ≡ - n
rem (pos zero) = pres1 (snd ϕ)
rem (pos (suc zero)) = p
rem (pos (suc (suc n))) = pres· (snd ϕ) (pos (suc n)) (pos 1) ∙ cong₂ _+ℤ_ (rem (pos (suc n))) p
rem (negsuc zero) = rem-1
rem (negsuc (suc n)) = pres· (snd ϕ) (negsuc n) -1 ∙ cong₂ _+ℤ_ (rem (negsuc n)) rem-1
ℤHom-1 : fst ϕ -1 ≡ 1 → fst ϕ ≡ -_
ℤHom-1 p = ℤHom1- (presinv (snd ϕ) -1 ∙ cong -_ p)
module _ (ϕ : GroupEquiv ℤGroup ℤGroup) where
ℤEquiv1 : (groupEquivFun ϕ 1 ≡ 1) ⊎ (groupEquivFun ϕ 1 ≡ -1)
ℤEquiv1 =
groupEquivPresGen ℤGroup (compGroupEquiv ϕ (invGroupEquiv ϕ))
(pos 1) (inl (funExt⁻ (cong fst (invEquiv-is-rinv (ϕ .fst))) (pos 1))) ϕ
ℤEquivIsIdOr- : (g : ℤ) → (groupEquivFun ϕ g ≡ g) ⊎ (groupEquivFun ϕ g ≡ - g)
ℤEquivIsIdOr- g =
⊎-rec (λ h → inl (funExt⁻ (ℤHomId (_ , ϕ .snd) h) g))
(λ h → inr (funExt⁻ (ℤHom1- (_ , ϕ .snd) h) g))
ℤEquiv1
absℤEquiv : (g : ℤ) → abs g ≡ abs (fst (fst ϕ) g)
absℤEquiv g =
⊎-rec (λ h → sym (cong abs h))
(λ h → sym (abs- _) ∙ sym (cong abs h))
(ℤEquivIsIdOr- g)
characℤ≅ℤ : (e : GroupEquiv ℤGroup ℤGroup)
→ (e ≡ idGroupEquiv) ⊎ (e ≡ negEquivℤ)
characℤ≅ℤ e =
⊎-rec
(λ p → inl (Σ≡Prop (λ _ → isPropIsGroupHom _ _)
(Σ≡Prop (λ _ → isPropIsEquiv _)
(funExt λ x →
cong (e .fst .fst) (·Comm 1 x)
∙ GroupHomℤ→ℤPres· (fst (fst e) , snd e) x 1
∙ cong (x *_) p
∙ ·Comm x 1))))
(λ p → inr (Σ≡Prop (λ _ → isPropIsGroupHom _ _)
(Σ≡Prop (λ _ → isPropIsEquiv _)
(funExt λ x →
cong (fst (fst e)) (sym (ℤ.·IdR x))
∙ GroupHomℤ→ℤPres· ((fst (fst e)) , (snd e)) x 1
∙ cong (x *_) p
∙ ·Comm x -1 ))))
(ℤEquiv1 e)
absGroupEquivℤGroup : {G : Group₀} (ϕ ψ : GroupEquiv ℤGroup G) (g : fst G)
→ abs (invEq (fst ϕ) g) ≡ abs (invEq (fst ψ) g)
absGroupEquivℤGroup =
GroupEquivJ (λ G ϕ → (ψ : GroupEquiv ℤGroup G) (g : fst G)
→ abs (invEq (fst ϕ) g) ≡ abs (invEq (fst ψ) g))
(λ ψ → absℤEquiv (invGroupEquiv ψ))
GroupEquivℤ-isEquiv : {G : Group₀}
→ GroupEquiv ℤGroup G
→ (g : fst G)
→ gen₁-by G g
→ (ϕ : GroupHom G ℤGroup)
→ (fst ϕ g ≡ 1) ⊎ (fst ϕ g ≡ -1)
→ isEquiv (fst ϕ)
GroupEquivℤ-isEquiv {G = G} =
GroupEquivJ
(λ G _ → (g : fst G)
→ gen₁-by G g
→ (ϕ : GroupHom G ℤGroup)
→ (fst ϕ g ≡ 1) ⊎ (fst ϕ g ≡ -1)
→ isEquiv (fst ϕ))
rem
where
rem : (g : ℤ)
→ gen₁-by ℤGroup g
→ (ϕ : GroupHom ℤGroup ℤGroup)
→ (fst ϕ g ≡ 1) ⊎ (fst ϕ g ≡ -1)
→ isEquiv (fst ϕ)
rem g gen ϕ (inl h₁) =
⊎-rec (λ h₂ → subst isEquiv (sym (ℤHomId ϕ (sym (cong (fst ϕ) h₂) ∙ h₁))) (idIsEquiv _))
(λ h₂ → subst isEquiv (sym (ℤHom-1 ϕ (sym (cong (fst ϕ) h₂) ∙ h₁))) isEquiv-)
(gen₁ℤGroup-⊎ g gen)
rem g gen ϕ (inr h₁) =
⊎-rec (λ h₂ → subst isEquiv (sym (ℤHom1- ϕ (sym (cong (fst ϕ) h₂) ∙ h₁))) isEquiv-)
(λ h₂ → subst isEquiv (sym (ℤHomId- ϕ (sym (cong (fst ϕ) h₂) ∙ h₁))) (idIsEquiv _))
(gen₁ℤGroup-⊎ g gen)
characGroupHomℤ : (e : GroupHom ℤGroup ℤGroup) → e ≡ ℤHom (fst e (pos 1))
characGroupHomℤ e =
Σ≡Prop (λ _ → isPropIsGroupHom _ _)
(funExt λ { (pos n) → lem n
; (negsuc n)
→ presinv (snd e) (pos (suc n))
∙ cong -_ (lem (suc n))
∙ sym (ℤ·negsuc (fst e 1) n) })
where
lem : (n : ℕ) → fst e (pos n) ≡ fst e 1 * (pos n)
lem zero = pres1 (snd e) ∙ ·Comm 0 (fst e 1)
lem (suc zero) = ·Comm 1 (fst e 1)
lem (suc (suc n)) =
pres· (snd e) (pos (suc n)) 1
∙ cong (_+ℤ fst e 1) (lem (suc n))
∙ cong (fst e (pos 1) * pos (suc n) +ℤ_) (·Comm 1 (fst e 1))
∙ sym (·DistR+ (fst e 1) (pos (suc n)) 1)
imℤHomSubGroup : (f : GroupHom ℤGroup ℤGroup) → NormalSubgroup ℤGroup
imℤHomSubGroup f = imNormalSubgroup f +Comm
module _ (f : GroupHom ℤGroup ℤGroup) where
trivHom→ℤ≅ℤ/im : fst f 1 ≡ 0
→ GroupIso ℤGroup (ℤGroup / imℤHomSubGroup f)
trivHom→ℤ≅ℤ/im q =
trivialRelIso
(imℤHomSubGroup f)
λ x y → Prop.rec (isSetℤ _ _)
λ {(c , p) →
GroupTheory.invUniqueL ℤGroup
{g = x} {h = (GroupStr.inv (snd ℤGroup) y)}
(sym p ∙ (funExt⁻ (cong fst (characGroupHomℤ f ∙ cong ℤHom q)) c))
∙ GroupTheory.invInv ℤGroup y}
ℤHom→ℤ/im≅ℤ/im1 : (n : ℕ) → fst f 1 ≡ pos (suc n)
→ BijectionIso (ℤGroup / imℤHomSubGroup f) (ℤGroup/ (suc n))
fst (BijectionIso.fun (ℤHom→ℤ/im≅ℤ/im1 n p)) =
sRec isSetFin (ℤ→Fin n) λ a b
→ rec (isSetFin _ _) (uncurry λ x q
→ (cong (ℤ→Fin n) (cancel-lem a b _
(sym q ∙ funExt⁻ (cong fst (characGroupHomℤ f ∙ cong ℤHom p)) x)))
∙ pres· (isHomℤ→Fin n) (pos (suc n) * x) b
∙ cong (_+ₘ ℤ→Fin n b) (lem x)
∙ GroupStr.·IdL (snd (ℤGroup/ (suc n))) (ℤ→Fin n b))
where
lem : (x : ℤ) → ℤ→Fin n (pos (suc n) * x) ≡ 0
lem (pos x) = cong (ℤ→Fin n) (sym (pos· (suc n) x))
∙ Σ≡Prop (λ _ → isProp≤)
(cong (_mod (suc n)) (·-comm (suc n) x)
∙ zero-charac-gen (suc n) x)
lem (negsuc x) =
cong (ℤ→Fin n) (pos·negsuc (suc n) x
∙ cong -_ (sym (pos· (suc n) (suc x))))
∙∙ cong -ₘ_ (Σ≡Prop (λ _ → isProp≤)
(cong (_mod (suc n)) (·-comm (suc n) (suc x))
∙ zero-charac-gen (suc n) (suc x)))
∙∙ GroupTheory.inv1g (ℤGroup/ (suc n))
cancel-lem : (a b x : ℤ) → a +ℤ (- b) ≡ x → a ≡ x +ℤ b
cancel-lem a b x p = sym (minusPlus b a) ∙ cong (_+ℤ b) p
snd (BijectionIso.fun (ℤHom→ℤ/im≅ℤ/im1 n p)) =
makeIsGroupHom (elimProp2 (λ _ _ → isSetFin _ _) (pres· (isHomℤ→Fin n)))
BijectionIso.inj (ℤHom→ℤ/im≅ℤ/im1 n p) =
elimProp (λ _ → isPropΠ λ _ → squash/ _ _)
(λ { (pos x) q → eq/ (pos x) 0
∣ (((pos (quotient x / (suc n)))) ,
(funExt⁻ (cong fst (characGroupHomℤ f ∙ cong ℤHom p)) ((pos (quotient x / (suc n))))
∙ sym (pos· (suc n) (quotient x / (suc n)))
∙ cong pos ((λ i → q (~ i) .fst +ℕ suc n ·ℕ (quotient x / suc n)))
∙ cong pos (≡remainder+quotient (suc n) x))) ∣₁ ;
(negsuc x) q → eq/ (negsuc x) 0
∣ (((- pos (quotient suc x / (suc n)))) ,
presinv (snd f) (pos (quotient suc x / (suc n)))
∙ (cong -_ (funExt⁻ (cong fst (characGroupHomℤ f ∙ cong ℤHom p))
(pos (quotient (suc x) / (suc n))))
∙∙ cong -_ (sym (pos· (suc n) (quotient suc x / (suc n)))
∙ (λ i → pos (fst ((sym (GroupTheory.invInv
(ℤGroup/ (suc n))
((suc x mod suc n) , mod< n (suc x)))
∙ cong -ₘ_ q
∙ GroupTheory.inv1g (ℤGroup/ (suc n))) (~ i))
+ℕ suc n ·ℕ quotient (suc x) / suc n)))
∙∙ cong -_ (cong pos (≡remainder+quotient (suc n) (suc x))))) ∣₁})
BijectionIso.surj (ℤHom→ℤ/im≅ℤ/im1 n p) x =
∣ [ pos (fst x) ]
, (Σ≡Prop (λ _ → isProp≤) (modIndBase n (fst x) (snd x))) ∣₁
ℤ/imIso : (f : GroupHom ℤGroup ℤGroup)
→ GroupIso (ℤGroup / imℤHomSubGroup f) (ℤGroup/ abs (fst f 1))
ℤ/imIso f = helpIso _ refl
where
helpIso : (a : ℤ)
→ fst f 1 ≡ a → GroupIso (ℤGroup / imℤHomSubGroup f) (ℤGroup/ abs a)
helpIso (pos zero) p = invGroupIso (trivHom→ℤ≅ℤ/im f p)
helpIso (pos (suc n)) p = BijectionIso→GroupIso (ℤHom→ℤ/im≅ℤ/im1 f n p)
helpIso (negsuc n) p =
subst ((λ x → GroupIso (ℤGroup / x) (ℤGroup/ abs (negsuc n))))
(sym lem1)
(BijectionIso→GroupIso
(ℤHom→ℤ/im≅ℤ/im1 extendHom n (cong -_ p)))
where
extendHom : GroupHom ℤGroup ℤGroup
extendHom = compGroupHom f (fst (fst negEquivℤ) , snd negEquivℤ)
lem1 : imℤHomSubGroup f ≡ imℤHomSubGroup extendHom
lem1 = Σ≡Prop (λ _ → isPropIsNormal _)
(Σ≡Prop (λ _ → isPropIsSubgroup _ _)
(funExt λ x → Σ≡Prop (λ _ → isPropIsProp)
(isoToPath (iso
(Prop.map (λ { (x , q) → (- x) , cong -_ (presinv (snd f) x)
∙ GroupTheory.invInv ℤGroup (fst f x)
∙ q }))
(Prop.map (λ { (x , q) → (- x) , (presinv (snd f) x ∙ q) }))
((λ _ → squash₁ _ _))
(λ _ → squash₁ _ _)))))
module _ (f : GroupHom ℤGroup ℤGroup) (G : Group₀)
(g : GroupHom ℤGroup G)
(ex : Exact4 ℤGroup ℤGroup G UnitGroup₀ f g (→UnitHom G)) where
private
imf≡kerg : imℤHomSubGroup f ≡ kerNormalSubgroup g
imf≡kerg =
Σ≡Prop (λ _ → isPropIsNormal _)
(Σ≡Prop (λ _ → isPropIsSubgroup _ _)
(funExt λ x → Σ≡Prop (λ _ → isPropIsProp)
(isoToPath
(isProp→Iso
(isPropIsInIm _ _)
(isPropIsInKer _ _)
(ImG→H⊂KerH→L ex x)
(KerH→L⊂ImG→H ex x)))))
ℤ/im≅ℤ/ker : GroupIso (ℤGroup / imℤHomSubGroup f) (ℤGroup / kerNormalSubgroup g)
ℤ/im≅ℤ/ker =
GroupEquiv→GroupIso (invEq (GroupPath _ _) (cong (ℤGroup /_) imf≡kerg))
GroupIsoℤ/abs : GroupIso (ℤGroup/ abs (fst f (pos 1))) G
GroupIsoℤ/abs =
compGroupIso
(invGroupIso (ℤ/imIso f))
(compGroupIso
ℤ/im≅ℤ/ker
(compGroupIso
(invGroupIso (isoThm1 g))
(surjImIso g λ a → KerL→R⊂ImH→L ex a refl)))
GroupEquivℤ/abs-gen : (G H L : Group₀)
→ (e : GroupEquiv ℤGroup G)
→ (r : GroupEquiv ℤGroup H)
→ (f : GroupHom G H) (g : GroupHom H L)
→ Exact4 G H L UnitGroup₀ f g (→UnitHom L)
→ GroupEquiv (ℤGroup/ abs (invEq (fst r) (fst f (fst (fst e) 1)))) L
GroupEquivℤ/abs-gen G H L =
GroupEquivJ (λ G e
→ (r : GroupEquiv ℤGroup H)
→ (f : GroupHom G H) (g : GroupHom H L)
→ Exact4 G H L UnitGroup₀ f g (→UnitHom L)
→ GroupEquiv (ℤGroup/ abs (invEq (fst r) (fst f (fst (fst e) 1)))) L)
(GroupEquivJ (λ H r
→ (f : GroupHom ℤGroup H) (g : GroupHom H L) →
Exact4 ℤGroup H L UnitGroup₀ f g (→UnitHom L) →
GroupEquiv
(ℤGroup/ abs (invEq (fst r) (fst f 1))) L)
λ f g ex → GroupIso→GroupEquiv (GroupIsoℤ/abs f L g ex))
abstract
abstractℤGroup/_ : ℕ → Group₀
abstractℤGroup/_ n = ℤGroup/ n
abstractℤ/≡ℤ : abstractℤGroup/_ ≡ ℤGroup/_
abstractℤ/≡ℤ = refl
abstractℤ/≅ℤ : (n : ℕ) → GroupEquiv (abstractℤGroup/_ n) (ℤGroup/ n)
abstractℤ/≅ℤ n = idGroupEquiv
GroupEquiv-abstractℤ/abs-gen : (G H L : Group₀)
→ (e : GroupEquiv ℤGroup G)
→ (r : GroupEquiv ℤGroup H)
→ (f : GroupHom G H) (g : GroupHom H L)
→ Exact4 G H L UnitGroup₀ f g (→UnitHom L)
→ (n : ℕ)
→ abs (invEq (fst r) (fst f (fst (fst e) 1))) ≡ n
→ GroupEquiv (abstractℤGroup/_ n) L
GroupEquiv-abstractℤ/abs-gen G H L e r f g ex n p = main
where
abstract
main : GroupEquiv (abstractℤGroup/_ n) L
main =
transport (λ i
→ GroupEquiv (abstractℤ/≡ℤ (~ i) (p i)) L)
(GroupEquivℤ/abs-gen G H L e r f g ex)
1∈Im→isEquivℤ : (h : GroupHom ℤGroup ℤGroup) → isInIm h (pos 1) → isEquiv (fst h)
1∈Im→isEquivℤ h = Prop.rec (isPropIsEquiv _)
λ p → GroupEquivℤ-isEquiv idGroupEquiv 1
(λ r → r , (·Comm 1 r ∙ ℤ·≡· r 1)) h (main p)
where
main : Σ[ x ∈ ℤ ] fst h x ≡ 1 → (fst h 1 ≡ 1) ⊎ (fst h 1 ≡ -1)
main (n , p) =
≡±1-id n
(fst h (pos 1))
h1-id
(λ q → snotz (injPos (sym p
∙∙ cong (fst h) q
∙∙ IsGroupHom.pres1 (snd h))))
λ q → snotz (injPos (sym p
∙∙ cong (fst h) (·Comm 1 n ∙ ℤ·≡· n 1)
∙∙ homPresℤ· h 1 n ∙ (cong (n ℤ[ ℤGroup ]·_) q)
∙∙ sym (ℤ·≡· n 0)
∙∙ ·Comm n 0))
where
h1-id : pos 1 ≡ n * fst h (pos 1)
h1-id =
sym p
∙ cong (fst h) (sym (ℤ·≡· 1 n)
∙∙ ·Comm 1 n ∙∙ ℤ·≡· n 1)
∙ (homPresℤ· h 1 n)
∙ sym (ℤ·≡· n (fst h 1))
≡±1-id : (a b : ℤ) → 1 ≡ a * b
→ ¬ (a ≡ 0) → ¬ (b ≡ 0)
→ (b ≡ 1) ⊎ (b ≡ -1)
≡±1-id a (pos zero) p a≠0 b≠0 = ⊥-rec (b≠0 refl)
≡±1-id a (pos (suc zero)) p a≠0 b≠0 = inl refl
≡±1-id (pos zero) (pos (suc (suc n))) p a≠0 b≠0 = ⊥-rec (a≠0 refl)
≡±1-id (pos (suc n₁)) (pos (suc (suc n))) p a≠0 b≠0 =
⊥-rec (snotz
(cong predℕ (injPos ((pos· (suc n₁) (suc (suc n)) ∙ sym p)))))
≡±1-id (negsuc n₁) (pos (suc (suc n))) p a≠0 b≠0 =
⊥-rec (snotz (sym (injNegsuc (cong (predℤ ∘ predℤ)
(p ∙ negsuc·pos n₁ (suc (suc n))
∙ cong (-_) (sym (pos· (suc n₁) (suc (suc n)))))))))
≡±1-id a (negsuc zero) p a≠0 b≠0 = inr refl
≡±1-id (pos zero) (negsuc (suc n)) p a≠0 b≠0 = ⊥-rec (a≠0 refl)
≡±1-id (pos (suc n₁)) (negsuc (suc n)) p a≠0 b≠0 =
⊥-rec (snotz (sym (injNegsuc
(cong (predℤ ∘ predℤ) (p ∙ pos·negsuc (suc n₁) (suc n)
∙ cong (-_) (sym (pos· (suc n₁) (suc (suc n)))))))))
≡±1-id (negsuc n₁) (negsuc (suc n)) p a≠0 b≠0 =
⊥-rec (snotz (injPos
(sym (cong predℤ (p ∙ negsuc·negsuc n₁ (suc n)
∙ sym (pos· (suc n₁) (suc (suc n))))))))
1∈Im→isEquiv : ∀ (G : Group₀) (e : GroupEquiv ℤGroup G)
→ (h : GroupHom G ℤGroup)
→ isInIm (_ , snd h) 1
→ isEquiv (fst h)
1∈Im→isEquiv G =
GroupEquivJ
(λ H _ → (h : GroupHom H ℤGroup)
→ isInIm (_ , snd h) 1
→ isEquiv (fst h))
1∈Im→isEquivℤ