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Algebraic function fields
Exercise sheet 1: Algebraic preliminaries

Exercise 1.1. Algebraically closed rings are infinite Ó

Let A be an algebraically closed ring, i. e. every monic polynomial of positive degree has a zero.
Let x1, . . . , xn ∈ A. Show that there is an element y ∈ A which is apart from all the xi.
Note. Elements x, y ∈ A are (strongly) apart iff x− y is invertible.

Solution. For n = 0, pick y := 0. For n ≥ 1, use as y any zero of the monic polynomial (X −
x1) · · · (X − xn) + 1 of positive degree. (Factors of invertible elements are themselves invertible.)

Exercise 1.2. Infinitude of the irreducible polynomials

Let k be a field. Let f1, . . . , fn ∈ k[X] be irreducible polynomials. Assuming that every nonzero
polynomial can be factored into irreducible polynomials, show that there is an irreducible polynomial
distinct from the given fi.
Hint. Adapt Euclid’s proof of the infinitude of the primes.

Solution. If n = 0, use the polynomial X .

If n ≥ 1, consider f1 · · · fn + 1. to be continued

Exercise 1.3. Vanishing of polynomials Ó

(a) Let A be a ring. Let f ∈ A[X] be a polynomial of degree ≤ n. Show: If f has n+ 1 pairwise
weakly apart zeros, then f = 0.
Note. Elements x, y ∈ A are weakly apart iff x − y is regular. An element u ∈ A is called regular if and only if uv = 0
implies v = 0 for all v ∈ A.

(b) Let A be an infinite integral domain. Let f ∈ A[X1, . . . , Xn]. Suppose f(x1, . . . , xn) = 0 for
all x1, . . . , xn ∈ A. Show that f = 0.
Note. That A is infinite means that given elements a1, . . . , an ∈ A, there is always a distinct element b ∈ A.
Hint. Write f as a polynomial inXn over A[X1, . . . , Xn−1] and use induction and (a).

(c) Mine your proof of (b) to give a more quantitative version: How many and which zeros does a
multivariate polynomial need to have in order for it be the zero polynomial?

Solution.

(a) The case n = 0 is immediate. Let n ≥ 1 and let a ∈ A be a zero of f . By expanding f((X−a)+
a) we observe that f(X) = (X − a)g(X) for some polynomial g ∈ A[X] of degree ≤ n− 1.
Every zero of f weakly apart from a is also a zero of g. Hence we can conclude by the induction
hypothesis.

(b) The case n = 0 is immediate. For n ≥ 1, write f =
∑d

i=0 gi(X1, . . . , Xn−1)X
i
n as a

polynomial in Xn. We claim that all the coefficients gi are zero in A[X1, . . . , Xn−1]. To
this end, it suffices by the induction hypothesis to verify that gi(a1, . . . , an−1) = 0 for
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every point (a1, . . . , an−1) ∈ An−1. This follows from part (a) as the univariate polyno-
mial f(a1, . . . , an−1, Xn) =

∑d
i=0 gi(a1, . . . , an−1)X

i
n has more than d zeros, and becauseA

is an integral domain distinctness implies weak apartness.

Alternative solution. For every element a ∈ A, the polynomial f(X1, . . . , Xn−1, a) is zero
in A[X1, . . . , Xn−1] by the induction hypothesis. Hence, viewed as an univariate polynomial
in Xn, the polynomial f has more zeros than its formal degree. So f = 0 by part (a) applied
to the integral domain A[X1, . . . , Xn−1].

(c) A quantitative result is the following. LetA be a ring. Let f ∈ A[X1, . . . , Xn] be a polynomial
of total degree ≤ d. If there is a setM ⊆ A of d+1 weakly apart elements such that f is zero
onMn, then f = 0.

Exercise 1.4. Examples for irreducible polynomials

Which of the following polynomials over a field k are irreducible? Do the answers depend on k?

(a) Y −X2

(b) XY − 1

(c) X2 + Y 2

Note. A regular element f is irreducible iff f ∼ g1 · · · gn implies f ∼ gi for some i, where a ∼ b (“a and b are associated”) means
that a = ub for some unit b. Hint. Use k[X,Y ] ∼= (k[X])[Y ].

Solution.

(a) As a polynomial in Y , it is monic linear, hence irreducible.

(b) As a polynomial in Y , it is linear with the ideal (X,−1) of its coefficients being improper,
hence irreducible.
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Algebraic function fields
Exercise sheet 2: Algebraic sets

Exercise 2.1. Examples for algebraic sets Ó

Let k be a field.

(a) Show that the twisted cubic C = {(t, t2, t3) | t ∈ k} ⊆ A3
k is algebraic. Can you do describe it

using only quadratic equations?

(b) Observe that the set {M ∈ kn×n |M tM = En} of orthogonal matrices is algebraic.

Note. We identify kn×n with kn
2
.

(c) Show that the set A2
k \ {(0, 0)} is not algebraic, if k is infinite.

Solution.

(a) We have {(t, t2, t3) | t ∈ k} = V (Y −X2, Z −X3) = V (Y −X2, Z −XY ).

(b) Expanding the condition M tM = En in terms, we observe that the given set is clearly cut
out by quadratic equations in the coefficients ofM .

(c) Assume thatA2 \{(0, 0)} = V (f1, . . . , fr). As k is infinite, there is a setM ⊆ k \{0} consist-
ing of more distinct elements than the maximum of the formal degrees of the polynomials fi.
By assumption, the polynomials fi vanish on M2. Hence Exercise 1.3(c) implies that they are
identically zero. Thus V (f1, . . . , fr) = V (0) = A2, a contradiction.

Exercise 2.2. On the size of algebraic sets Ó

Let k be a field.

(a) Show that every finite subset {x1, . . . , xr} ⊆ An
k of r distinct points is algebraic.

(b) Show that at most A1
k itself is an infinite algebraic subset of A1

k.
Note. Similar to Exercise 1.3(c), there is also a quantitative version of this result.

(c) For a suitable choice of k, give an example for a countable union of algebraic sets which is not
algebraic.

Solution.

(a) Singleton sets are algebraic ({(a1, . . . , an)} = V (X1 − a1, . . . , Xn − an)) and the union of
pairwise disjoint algebraic sets is algebraic.

(b) Let M = V (f1, . . . , fr) be an algebraic subset of A1
k. Let d1, . . . , dr be bounds on the total

degrees of the polynomials f1, . . . , fr. If M contains max{d1, . . . , dr} + 1 distinct (hence
weakly apart) points, then all the fi have more zeros than their degree and hence vanish by
Exercise 1.3(a), so thenM = A1

k.

(c) For k = Q, the union
⋃

n∈N{n} of singleton (hence algebraic) sets is not algebraic in view
of (b).

Exercise 2.3. Lines intersecting curves
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Let k be a field. Let C = V (f) ⊆ A2
k be an affine plane curve, where f ∈ k[X,Y ] is a polynomial

of degree ≤ n. Let L ⊆ A2
k be a line. Show: If C ∩ L contains more than n points, then L ⊆ C .

Hint. Suppose L = V (Y − (aX + b)) and consider f(X, aX + b) ∈ k[X].

Exercise 2.4. A first exercise in fibered thinking

Let k be an infinite field. Let f ∈ k[X1, . . . , Xn].

(a) Let n ≥ 1. Show: If D(f) is inhabited at all, then D(f) is infinite.

(b) Let n ≥ 2. Let k be algebraically closed with decidable equality. Show that V (f) is infinite,
if f is of positive degree.
Note. Recall that a set X has decidable equality iff for all x, y ∈ X , either x = y or x ̸= y. Anonymously—disregarding
algorithmic implementability and stability in families—every set has decidable equality.

Exercise 2.5. Discriminating functions Ó

Let k be a field. LetM ⊆ An
k be an algebraic set.

(a) Let p ̸∈ M . Show that there is a polynomial f ∈ I(M) with f(p) = 1.

(b) Let p1, . . . , pr ̸∈ M be distinct points. Find polynomials f1, . . . , fr ∈ I(M) with fi(pj) = δij .
Note. The Kronecker delta δij is 1 if i = j, and 0 otherwise.
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Algebraic function fields
Exercise sheet 3: Varieties

Exercise 3.1. Examples for varieties

Let k be an infinite field which is also an integral domain.

(a) Verify that I(V (Y −X2)) = (Y −X2). Conclude that V (Y −X2) ⊆ A2
k is irreducible.

(b) Assuming that 2 ̸= 0 in k, decompose V (Y 4 −X2, Y 4 −X2Y 2 +XY 2 −X3) ⊆ A2
k into

irreducible components.

(c) Determine I(C)where C is the twisted cubic of Exercise 2.1(a) and verify that C is irreducible.

(d) Determine I(A1
K) and decompose A1

K into irreducible components in the caseK = Fp.

Exercise 3.2. On the intersection of plane curves

Let k be a field with decidable equality. Let f, g ∈ k[X,Y ] be polynomials of positive degree
with gcd(f, g) = 1.

(a) Find polynomials d ∈ k[X], e ∈ k[Y ] of positive degree such that V (f, g) ⊆ V (d)× V (e).
Note. The following algebraic preliminaries are useful. As k has decidable equality, so has k(X) and hence k(X)[Y ] is a Bézout
ring. By a lemma of Gauß, we have gcd(f, g) = 1 not only in k[X][Y ] but also in k(X)[Y ].

(b) Conclude that there is a number r ∈ N such that it is not the case that V (f, g) contains more
than r distinct points.

Exercise 3.3. The many forms of the affine line

Let k be an algebraically closed field with decidable equality. Which of the following algebraic sets
are isomorphic to A1

k?

(a) V (Y −X2) ⊆ A2
k

(b) C ⊆ A3
k from Exercise 2.1(a)

(c) V (XY − 1) ⊆ A2
k

(d) V (Y 2 −X3) ⊆ A2
k

Exercise 3.4. Functions on the point

Let k be a field. LetM ⊆ An
k be an algebraic set. Consider the following statements:

(1) M = {p} for some point p ∈ An
k .

(2) The canonical morphism k → ΓM is an isomorphism.

(3) The k-vector space ΓM is finitely generated.

Prove:

(a) (1) ⇒ (2) ⇒ (3).

(b) (2) ⇒ (1).

(c) (3) ⇒ (2), if k is algebraically closed and an integral domain and ifM is irreducible.
Hint (Cayley–Hamilton). Let A be a ring. Let B be an A-algebra which is generated as an A-module by d elements. Let u ∈ B.
Then there is a monic polynomial f ∈ A[X] of degree d such that f(d) = 0.

(d) (3) ⇒ anonymously (1), if k is an integral domain and M is irreducible.
Hint. Show that it is impossible for M to be infinite, by using the following result of the class: If an algebraic set V contains r
distinct points, then there is a linearly independent family of r vectors in ΓV .
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Exercise 4.1. Examples for finite and non-finite maps

Which of the following ring homomorphisms mapping f to [f ] are finite? Provide proofs.
(a) k[X] → k[X,Y ]/(Y −X2)

(b) k[X] → k[X,Y ]/(X − Y 2)

(c) k[X] → k[X,Y ]/((Y −X)(Y +X))

(d) k[X] → k[X,Y ]/(XY )

(e) k[X] → k[X,Y ]/(XY − 1)
Hint. In order to form an opinion of the morphisms being finite, it may be useful to picture them geometrically and check whether the
fibers are finite. For instance, the first morphism corresponds to the projection map V (Y −X2) → A1

k, (x, y) 7→ x.

Exercise 4.2. A concrete Noether normalization

Let k be a field. Find a finite injective k-algebra homomorphism

k[T ] −→ k[X,Y ]/(XY − 1)

and interpret your result geometrically.

Exercise 4.3. Linear substitutions suffice

Let k be an infinite field with decidable equality. Let f ∈ k[X1, . . . , Xn, T ] be a polynomial in
which T actually occurs. Show that there exist numbers µ, λ1, . . . , λn ∈ k such that the polyno-
mial µf(X1 + λ1T, . . . ,Xn + λnT, T ) is monic of positive degree in T .
Hint. Write f as the sum of its homogeneous components and consider the highest-degree component.

Exercise 4.4. First steps with integral extensions

(a) Let A be a ring. Let x ∈ A such that x2 − 3x+ 1 = 0. Let y ∈ A such that y2 + 5y − 2 = 0.
Find a monic polynomial f ∈ Z[T ] such that f(x+ y) = 0.

(b) Let A ⊆ B be an integral ring extension (i. e. A is a subring of B such that every element
of B is the zero of a monic polynomial with coefficients from A). Let x ∈ A. Show: If x is
invertible in B, then also in A.

Exercise 4.5. The strong and the weak Nullstellensatz

(a) Let A be a ring. Show that a polynomial f =
∑

i aiT
i ∈ A[T ] is invertible iff a0 ∈ B is

invertible and a1, a2, . . . are nilpotent.
Note. The direction “⇒” admits a direct elementary proof, but it might be simpler to employ Krull’s theorem: To verify that an
element is nilpotent, show that it is contained in all prime ideals. In this form Krull’s theorem is not constructive; this drawback
can be healed by using the generic prime ideal.

(b) Let a ⊆ A be an ideal in a ring A. Let g ∈ A. Let b := a[T ] + (1 − gT ) ⊆ A[T ]. Prove:
g ∈

√
a ⇐⇒ 1 ∈ b.

(c) Let n ∈ N. Let A be a ring such that

1 ∈ b ∨ V (b) inhabited

for all finitely generated ideals b ⊆ A[X1, . . . , Xn, T ]. Show that

g ∈
√
a ∨ V (b) ∩D(g) inhabited

for all finitely generated ideals a ⊆ A[X1, . . . , Xn] and all polynomials g ∈ A[X1, . . . , Xn].

6



DR
AF
T

Ingo Blechschmidt Master course
University of Antwerp Winter term 2024

Algebraic function fields
Exercise sheet 5: Unsorted drafts

Exercise 5.1. Consequences of the duality axiom

Recall that the ring R in synthetic algebraic geometry fulfills the following duality axiom: Given
any polynomials f1, . . . , fr ∈ R[X1, . . . , Xn], the canonical R-algebra homomorphism

R[X1, . . . , Xn]/(f1, . . . , fr) −→ RV (f1,...,fn)

[g] 7−→ (p 7→ g(p))

where V (f1, . . . , fn) = {p ∈ Rn | f1(p) = . . . = fr(p) = 0} is an isomorphism. Show that this
axiom implies the following consequences.

(a) For every map f : R → R, there is a unique polynomial g ∈ R[X] such that f(x) = g(x) for
all x ∈ R.

(b) Let f1, . . . , fr ∈ R[X] by polynomials with no common zero. Then 1 ∈ (f1, . . . , fr).

(c) Let x ∈ R be not invertible. Then x is nilpotent.
Hint. Consider the polynomial f(Y ) = xY − 1.

(d) Let f ∈ R[X] be monic of positive degree. Then it’s impossible for f to have no zero.

(e) Let x1, . . . , xn ∈ R. There it’s not the case that there is no y ∈ R apart from all xi.
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